Corsica Stickney Curriculum Map
Subject: Geometry
Grade: $9^{\text {th }} / 10^{\text {th }}$
Unit Transformations and Congruence
Module 1 Tools of Geometry
Summary of unit:
Students will learn about segments and angles, reasoning and proof, translations, reflections, and rotations, symmetry, corresponding parts of congruent figures.

Stage 1 - Desired Results

Standards

G-CO.A. 1 Know precise definitions of ... line segment, based on the undefined notions of ... distance along a line,

G-C0.D. 12 Perform geometric constructions with a compass and straightedge. including copying a segment; copying an angle; bisecting a segment; bisecting an angle; constructing perpendicular lines/segments, constructing a line parallel to a given line through a point not on the line.

G-GPE.B. 4 Use coordinates to prove geometric relationships algebraically.

G-CO.A. 1 Know precise definitions of angle ... based on the undefined notions of ... distance around a circular arc.

G-CO.A. 2 Represent transformations in the plane ...; describe transformations as functions Compare transformations that preserve distance and angle to those that do not

G-CO.C. 9 Prove theorems about lines and angles.

Work with a small group to match pictures to "geometry term cards."

Teacher: Mrs. Jacque Boyle
Duration: August 2019

Corsica Stickney Curriculum Map

Work with a partner to play "angle charades." Students work together to give oral, verbal and pictorial clues and justify transformations drawn from clues.	MP. 6 Precision MP. 3 Construct Arguments	measure the angle. If the angle is smaller than the distance from the center mark to the edge of the protractor, this will make it easier to accurately measure the angle. Encourage students to estimate an angle measure before measuring to make sure the measurement is reasonable. 1.3 This lesson provides an opportunity to address Mathematical Practice MP.6, which calls for students to "attend to precision." Students are already familiar with transformations in the plane and, in this lesson, students use graph paper to draw transformations. They use protractors, rulers, and coordinates to determine whether length and angle measure have been preserved. They also use concepts about functions to write the rules that express transformations algebraically. This lesson provides an opportunity to address Mathematical Practice MP.3, which calls for students to "construct viable arguments." Students use deductive reasoning, and explain steps logically from definite premises to a definite general conclusion. They use inductive reasoning to make a conjecture about what is true in general by examining several cases, and they justify the falsehood of a conclusion by citing a counterexample.
Vocabulary		Differentiation
Point Line Plane Line Segment Endpoints	Preimage Conjecture Inductive Reasoning Deductive Reasoning Theorem	Students who need extra help receive help from teacher one on one for independent working time. If appropriate, they complete

Corsica Stickney Curriculum Map

Ray Transformations Image	Counterexample Conditional statement Linear pair		worksheets or tests in an alternate setting.
Stage 2 - Assessment Evidence			
Performance Tasks: Homework quizzes, worksheet, Tests.		Unit Pre Assign r to prepa	ssment: made or customized practice tests udents for high-stakes tests
Stage 3 - Learning Plan			
- Learning Activities: procedures/topics - Reading and discussing lesson with class as lecture time. - Giving students examples to be completed in class. Most times using the Think, Pair, and Share to keep students active in their learning individually and together. - Students take notes and use notes to complete homework assignments. - Sometimes activities used to present things in multiple ways or for extra practice on struggling concepts.			
Lesson Descriptions			
LESSON 1.1 Segment Length and Midpoints LESSON 1.2 Angle Measures and Angle Bisectors LESSON 1.3 Representing and Describing Transformations LESSON 1.4 Reasoning and Proof			

Corsica Stickney Curriculum Map

Subject: Geometry
Grade: $9^{\text {th }} / 10^{\text {th }}$
Unit 1 Transformations and Congruence
Module 2 Transformations and
Symmetry
Module 3 Congruent Figures
Summary of unit:
Students will learn about segments and angles, reasoning and proof, translations, reflections, and rotations, symmetry, corresponding parts of congruent figures.

Stage 1 - Desired Results

Standards

G-CO.A. 4 Develop definitions of ... translations in terms of ... parallel lines, and line segments.

G-CO.A. 1 State and apply precise definitions of angle, circle, perpendicular, parallel, ray, line segment, and distance based on the undefined notions of point, line, and plane.

G-CO.A. 2 Represent transformations in the plane. (e.g., using transparencies and/or geometry software); a. Describe transformations as functions that take points in the plane as inputs and give other points as outputs. b. Compare transformations that preserve distance and angle to those that do not (e.g., translation versus dilation).

G-CO.A. 4 Develop definitions of ... reflections ... in terms of ... perpendicular lines

G-CO.D. 12 Perform geometric constructions with a compass and straightedge. including copying a segment; copying an angle; bisecting a segment; bisecting an angle; constructing perpendicular lines/segments, constructing a line parallel to a given line through a point not on the line

Essential Questions:

How do you draw the image of a figure under a translation?

How do you draw the image of a figure under a reflection?

How do you draw the image of a figure under a rotation?

How do you determine whether a figure has line symmetry or rotational symmetry?

What happens when you apply more than one transformation to a figure?

How can you determine whether two figures are congruent?

What can you conclude about two figures that are congruent?

G-MG.A. 3 Apply geometric concepts to solve design problems (e.g., designing an object or structure to satisfy physical constraints or minimize cost; working with typographic grid systems based on ratios).			
G-CO.A. 4 Develop definitions of rotations ... in terms of angles, circles, ... and line segments.			
G-CO.A. 3 Given a rectangle, parallelogram, trapezoid, or regular polygon, describe the rotations and reflections that carry it onto itself.			
G-CO.A. 5 ... Specify a sequence of transformations that will carry a given figure onto another			
G-C0.B. 6 ... given two figures, use the definition of congruence in terms of rigid motions to decide if they are congruent			
G-C0.B. 7 Use the definition of congruence in terms of rigid motions to show that two triangles are congruent if and only if corresponding pairs of sides and corresponding pairs of angles are congruent.			
Language objective	Mathemati	practices	Integrate mathematical practices
Work with a partner to identify examples and non-examples of translations.	MP. 7 Make structure	se of	2.1 This lesson provides an opportunity to address Mathematical Practice MP.7, which calls for students to "look for and
Work with a partner to discuss how to determine if a transformation is a reflection.			are already familiar with translating a figure in the plane; in this lesson, they explore translations using tracing paper, and then describe translations
Students work in small groups or pairs to identify and label the transformation shown on a coordinate plane and if a			using vectors, both in the plane and in the coordinate plane. Students use vector notation to describe the translation vector in component form, and then relate

Corsica Stickney Curriculum Map

Corsica Stickney Curriculum Map

- Sometimes activities used to present things in multiple ways or for extra practice on struggling concepts.

Lesson Descriptions

LESSON 2.1 Translations
LESSON 2.2 Reflections
LESSON 2.3 Rotations
LESSON 2.4 Investigating Symmetry
LESSON 3.1 Sequences of Transformations
LESSON 3.2 Proving Figures Are Congruent Using Rigid Motions
LESSON 3.3 Corresponding Parts of Congruent Figures Are Congruent

Corsica Stickney Curriculum Map
Subject: Geometry
Grade: $9^{\text {th }} / 10^{\text {th }}$
Unit 2 Lines, Angles and Triangles
Module 4 Lines and Angles
Module 5 Triangle Congruence Criteria
Summary of unit:
Students will learn about parallel lines, transversals, and angle relationships, perpendicular lines and bisectors, slopes and equations of parallel and perpendicular lines, congruence of triangles, geometric constructions, special triangles and triangle inequalities, and special segments of triangles.

Corsica Stickney Curriculum Map

Corsica Stickney Curriculum Map

Have students explain to a partner why a pair of triangles is congruent or noncongruent. Have students work in pairs to label and color code congruent angles and a side in pairs of triangles. Have students work in pairs to find an example in the lesson and write out a step-by-step explanation of how the SAS Triangle Congruence Theorem works. Have small groups of students complete a triangle congruence chart.		them to share their observations and conclusions with the class. As they share their findings, ask if anyone got different results. Discuss the differences. Promoting this type of dialogue in the classroom is an essential aspect of the standard.
Vocabulary		Differentiation
Vertical angles Flow proof Complementary angles Supplementary angles Transversal Corresponding angles Same-side interior angles	Alternate interior angles Alternate exterior angles Converse Indirect proof Biconditional Contrapositve	Students who need extra help receive help from teacher one on one for independent working time. If appropriate, they complete worksheets or tests in an alternate setting.
Stage 2 - Assessment Evidence		
Performance Tasks: Homework quizzes, worksh	Tests. Unit Pre-As Assign read to prepare	ssment: made or customized practice tests dents for high-stakes tests
Stage 3 - Learning Plan		
- Learning Activities: procedures/topics - Reading and discussing lesson with class as lecture time. - Giving students examples to be completed in class. Most times using the Think, Pair, and Share to keep students active in their learning individually and together. - Students take notes and use notes to complete homework assignments. - Sometimes activities used to present things in multiple ways or for extra practice on struggling concepts.		

Corsica Stickney Curriculum Map

Lesson Descriptions

LESSON 4.1 Angles Formed by Intersecting Lines
LESSON 4.2 Transversals and Parallel Lines
LESSON 4.3 Proving Lines Are Parallel
LESSON 4.4 Perpendicular Lines
LESSON 4.5 Equations of Parallel and Perpendicular Lines
LESSON 5.1 Exploring What Makes Triangles Congruent
LESSON 5.2 ASA Triangle Congruence
LESSON 5.3 SAS Triangle Congruence
LESSON 5.4 SSS Triangle Congruence

Subject: Geometry
Grade: $9^{\text {th }} / 10^{\text {th }}$
Unit 2 Lines, Angles and Triangles
Module 7 Properties of Triangles
Module 8 Special Segments in Triangles
Summary of unit:
Students will learn about parallel lines, transversals, and angle relationships, perpendicular lines and bisectors, slopes and equations of parallel and perpendicular lines, congruence of triangles, geometric constructions, special triangles and triangle inequalities, and special segments of triangles.

Stage 1 - Desired Results	
Standards	Essential Questions:
G-C0.C. 10 Prove theorems about	
triangles.	What can you say about the interior and exterior angles of a triangle and other polygons?
G-SRT.B. 5 Use congruence ... criteria for triangles to solve problems and to prove relationships in geometric figures.	What are the special relationships among angles and sides in isosceles and equilateral triangles?
G-C.A. 3 Construct the ... circumscribed circles of a triangle	How can you use inequalities to describe the relationships among side lengths and angle measures in a triangle?
G-CO.D. 12 . Perform geometric constructions with a compass and straightedge. including copying a segment; copying an angle; bisecting a segment; bisecting an angle; constructing perpendicular lines/segments, constructing a line parallel to a given line through a point not on the line.	
	How can you use perpendicular bisectors to find the point that is equidistant from all the vertices
	of a triangle?
	How can you use angle bisectors to find the point
	that is equidistant from all the sides of a triangle?
	How can you find the balance point or center of gravity of a triangle?
G-GPE.B. 4 Use coordinates to prove geometric relationships algebraically.	How are the segments that join the midpoints of a triangle's sides related to the triangle's sides?
G-GPE.B. 5 Define and use the slope criteria for parallel and perpendicular lines.	
G-C.A. 3 Construct the inscribed ... circles of a triangle	
G-CO.C. 9 Prove theorems about lines and angles. Theorems must include but not	
limited to: vertical angles are congruent; when a transversal intersects parallel lines, alternate interior angles are	

congruent and same side interior angles are supplementary (using corresponding angles postulate); points on a perpendicular bisector of a line segment are equidistant from the segment's endpoints.		
Language objective Work in small groups to play angle jeopardy. Explain to a partner what you can deduce about a triangle if it has two sides with the same length. Explain to a partner how to show the three inequalities generated for a triangle with side lengths a, b, and c . Work in small groups to match terms to picture cards. Students work in pairs to complete a compare/contrast chart for circumscribed and inscribed circles. With a partner, label the orthocenter, medians, and altitudes of triangles drawn on coordinate planes. Explain to a partner why a drawn segment in a triangle is or is not a midsegment.	Mathematical practices MP. 8 Patterns MP. 5 Using Tools	Integrate mathematical practices 7.1 This lesson provides an opportunity to address Mathematical Practice MP.8, which calls for students to "look for and identify patterns." Throughout the lesson, students use hands-on investigations or geometry to predict patterns and relationships for the interior and exterior angles of a triangle or polygon. They prove the Triangle Sum Theorem, the Polygon Angle Sum Theorem, and the Exterior Angle Theorem. The hands-on investigations give students a chance to use inductive reasoning to make a conjecture. This is followed by a proof in which students use deductive reasoning to justify their conjectures. This lesson provides an opportunity to address Mathematical Practice MP.5, which calls for students to "use appropriate tools." Throughout the lesson, students use paper and pencil, protractors and rulers, and algebraic rules to predict and draw the indicated segments related to triangles. They must be able to use the tools in a variety of ways to explore concepts, do measurements of segments and subsegments related to triangles, and to solve problems that involve segments of triangles.
Vocabulary		Differentiation

Corsica Stickney Curriculum Map

Interior angle Auxiliary line Exterior angle Remote interior angles Isosceles triangle legs vertex angle base base angles equilateral triangle equiangular triangle circumscribed circumcircle circumcenter	```concurrent point of concurrency distance from a point to a line inscribed incircle inscribed circle incenter median centroid altitude orthocenter midsegment```	Students who need extra help receive help from teacher one on one for independent working time. If appropriate, they complete worksheets or tests in an alternate setting.
Stage 2 - Assessment Evidence		
Performance Tasks: Homework quizzes, worksheet, Tests.		ssment: made or customized practice tests dents for high-stakes tests
Stage 3 - Learning Plan		
- Learning Activities: procedures/topics - Reading and discussing lesson with class as lecture time. - Giving students examples to be completed in class. Most times using the Think, Pair, and Share to keep students active in their learning individually and together. - Students take notes and use notes to complete homework assignments. - Sometimes activities used to present things in multiple ways or for extra practice on struggling concepts.		
Lesson Descriptions		
LESSON 7.1 Interior and Exterior Angles LESSON 7.2 Isosceles and Equilateral Triangles LESSON 7.3 Triangle Inequalities LESSON 8.1 Perpendicular Bisectors of Triangles LESSON 8.2 Angle Bisectors of Triangles LESSON 8.3 Medians and Altitudes of Triangles LESSON 8.4 Midsegments of Triangles		

Corsica Stickney Curriculum Map

Subject: Geometry
Grade: $9^{\text {th }} / 10^{\text {th }}$
Unit 2 Lines, Angles and Triangles
Module 6 Application of Triangle
Congruence
Unit 2 Test

Summary of unit:

Students will learn about parallel lines, transversals, and angle relationships, perpendicular lines and bisectors, slopes and equations of parallel and perpendicular lines, congruence of triangles, geometric constructions, special triangles and triangle inequalities, and special segments of triangles.

Stage 1 - Desired Results		
Standards G-SRT.B. 5 Use congruence triangles to solve problem relationships in geometric	Essential Qu riteria for d to prove What does the Theorem tel What does the tell you abou 	stions: AAS Triangle Congruence you about two triangles? HL Triangle Congruence Theorem two triangles?
Language objective Explain in your own words the difference between the AAS and ASA congruence theorems. Explain the HL Congruence Theorem in your own words.	Mathematical practices MP. 3 Logic MP. 7 Using Structure	Integrate mathematical practices This lesson provides an opportunity to address Mathematical Practice MP.3, which calls for students to "construct viable arguments and critique the reasoning of others." Students learn to justify the Angle-AngleSide Congruence Theorem by using a paragraph proof. Mathematical proofs must use precise language to ensure their validity. As students continue to explore congruent triangles, ask them to justify their conclusions and communicate them with the class. Promoting this type of dialogue in the classroom is an essential aspect of the standard. This lesson provides an opportunity to address Mathematical Practice MP.7, which calls for students to "look for and make use of structure." Students

Corsica Stickney Curriculum Map

		look at pairs of triangles that have two congruent sides and congruent non-included angles. They analyze these relationships to determine that this information is sufficient only to prove right triangles congruent.
Vocabulary		

Corsica Stickney Curriculum Map
Subject: Geometry
Grade: $9^{\text {th }} / 10^{\text {th }}$
Unit 3 Quadrilaterals and Coordinate
Proof
Module 9: Properties of Quadrilaterals
Module 10: Coordinate Proof Using Slope and Distance
Summary of unit:
Students will learn about properties of parallelograms, rectangles, rhombuses, and squares, theorems about parallelograms, properties of kites and trapezoids, coordinate proofs with slopes and lines that are parallel and perpendicular, the distance and midpoint formulas, perimeter and area on the coordinate plane, and finding areas of composite figures

Stage 1 - Desired Results

Standards

G-CO.C. 11 Prove theorems about parallelograms

G-CO.C. 10 Prove theorems about triangles. Theorems must include but not limited to: measures of interior angles of a triangle sum to 180°; base angles of isosceles triangles are congruent; the mid segment of a triangle is parallel to the third side and half the length; the medians of a triangle meet at a point.

G-SRT.B. 5 Use congruence ... criteria for triangles to solve problems and to prove relationships in geometric figures.

G-GPE.B. 5 Prove the slope criteria for parallel ... lines and use them to solve geometric problems ...

G-GPE.B. 5 Prove the slope criteria for ... perpendicular lines and use them to solve geometric problems

G-GPE.B. 4 Use coordinates to prove simple geometric theorems.

G-GPE.B. 7 Use coordinates to compute perimeters of polygons and areas of triangles and rectangles, e.g., using the distance formula.

Essential Questions:

What can you conclude about the sides, angles, and diagonals of a parallelogram?

What criteria can you use to prove that a quadrilateral is a parallelogram?

What are the properties of rectangles, rhombuses, and squares?

How can you use given conditions to show that a quadrilateral is a rectangle, a rhombus, or a square?

What are the properties of kites and trapezoids?

How can you use slope to solve problems involving parallel lines?

How can you use slope to solve problems involving perpendicular lines?

How do you write a coordinate proof?
How can you use slope and the distance formula in coordinate proofs?

Corsica Stickney Curriculum Map

Language objective	Mathematical practices	Integrate mathematical practices
Explain to a partner why pictures of quadrilaterals are or are not parallelograms.	MP. 7 Using Structure	9.4 This lesson provides an opportunity to address Mathematical Practice MP.7, which
Explain to a partner how to identify the opposite sides, opposite angles, and consecutive angles and sides of a quadrilateral.		make use of structure." Students are already familiar with the properties of rectangles, rhombuses, and squares, but in this lesson they must analyze the conditions that would be sufficient
Explain to a partner how to classify different types of quadrilaterals as rectangles, rhombuses, or squares.		to make a parallelogram a more special figure. Each theorem in the lesson presents a single condition that leads to a broader conclusion that a figure is a special quadrilateral. For example, it is
Explain to a partner how to distinguish between a condition for a quadrilateral to be a rectangle, rhombus, or square, and a property of a rectangle, rhombus, or square.		sufficient for one angle of a parallelogram to be a right angle to conclude that the parallelogram has four right angles (it is a rectangle).
Explain to a partner how to describe the properties of kites and trapezoids.		
Explain to a partner how to use slopes to find missing vertices and classify quadrilaterals.		
Work in small groups to draft an explanation for students beginning to study geometry of how you can use slope to solve problems involving perpendicular lines.		
Describe to a partner how to prove the Concurrency of Medians Theorem.		

Corsica Stickney Curriculum Map

Explain in your own words how to prove that a quadrilateral on a coordinate plane is a rectangle. Work in small groups to develop a series of written steps to explain how to calculate perimeter and area in the coordinate plane.		
Vocabulary		Differentiation
Quadrilateral Parallelogram Diagonal Rectangle Rhombus Square Kite	Trapezoid Isosceles trapezoid Midsegment of a trapezoid Coordinate proof Composite figure	Students who need extra help receive help from teacher one on one for independent working time. If appropriate, they complete worksheets or tests in an alternate setting.
Stage 2 - Assessment Evidence		
Performance Tasks: Homework quizzes, worksh	eet, Tests.Unit Pre-Ass Assign ready to prepare st	ssment: made or customized practice tests dents for high-stakes tests
Stage 3 - Learning Plan		
- Learning Activities: procedures/topics - Reading and discussing lesson with class as lecture time. - Giving students examples to be completed in class. Most times using the Think, Pair, and Share to keep students active in their learning individually and together. - Students take notes and use notes to complete homework assignments. - Sometimes activities used to present things in multiple ways or for extra practice on struggling concepts.		

Lesson Descriptions

LESSON 9.1 Properties of Parallelograms
LESSON 9.2 Conditions for Parallelograms
LESSON 9.3 Properties of Rectangles, Rhombuses, and Squares
LESSON 9.4 Conditions for Rectangles, Rhombuses, and Squares
LESSON 9.5 Properties and Conditions for Kites and Trapezoids
LESSON 10.1 Slope and Parallel Lines
LESSON 10.2 Slope and Perpendicular Lines
LESSON 10.3 Coordinate Proof Using Distance with Segments and Triangles
LESSON 10.4 Coordinate Proof Using Distance with Quadrilaterals
LESSON 10.5 Perimeter and Area on the Coordinate Plane

Corsica Stickney Curriculum Map

Corsica Stickney Curriculum Map
Subject: Geometry
Grade: $9^{\text {th }} / 10^{\text {th }}$
Unit 4 Similarity
Module 11 Similarity and
Transformations
Module 12 Using Similar Triangles
Summary of unit:
Students will learn about, similarity and dilations, similarity of circles, corresponding parts of similar figures, proving triangles similar, the triangle proportionality theorem, dividing segments in a given ratio, geometric means theorems, and proving the Pythagorean Theorem.

Stage 1 - Desired Results

Standards
G-SRT.A.1a, G-SRT.A.1.b Verify experimentally the properties of dilations given by a center and a scale factor

G-SRT.A. 2 Given two figures, use the definition of similarity in terms of similarity transformations to decide if they are similar ...

G-C.A.1 . Prove that all circles are similar.

G-SRT.A. 2 ... explain using similarity transformations the meaning of similarity for triangles ...

G-SRT.A. 3 Use the properties of similarity transformations to establish the AA criterion for two triangles to be similar.

G-CO.C. 10 Prove theorems about triangles. Theorems must include but not limited to: measures of interior angles of a triangle sum to 180°; base angles of isosceles triangles are congruent; the mid segment of a triangle is parallel to the third side and half the length; the medians of a triangle meet at a point.

G-CO.D. 12 Perform geometric constructions with a compass and

Essential Questions:

How does a dilation transform a figure?
How can similarity transformations be used to show two figures are similar?

If you know two figures are similar, what can you determine about measures of corresponding angles and lengths?

How can you show that two triangles are similar?

When a line parallel to one side of a triangle intersects the other two sides, how does it divide those sides?

How do you find the point on a directed line segment that partitions the given segment in a given ratio?

How can you use similar triangles to solve problems?

How does the altitude to the hypotenuse of a right triangle help you use similar right triangles to solve problems?

Corsica Stickney Curriculum Map

```
straightedge. including copying a
segment; copying an angle; bisecting a
segment; bisecting an angle;
constructing perpendicular
lines/segments, constructing a line
parallel to a given line through a point
not on the line
G-GPE.B. 6 Find the point on a directed line segment between two given points that partitions the segment in a given ratio.
G-SRT.B. 5 Use congruence and similarity criteria for triangles to solve problems and to prove relationships in geometric figures.
G-SRT.B. 4 Prove theorems about triangles involving similarity.
```


Corsica Stickney Curriculum Map

Corsica Stickney Curriculum Map

Subject: Geometry
Grade: $9^{\text {th }} / 10^{\text {th }}$
Unit 5 Trigonometry
Module 13 Trigonometry with Right
Triangles
Unit 6 Properties of Circles
Module 15 Angles and Segments in Circles

Summary of unit:

Students will learn about ratios in right triangles, using tangents, using sine and cosine, special right triangles, Pythagorean triples, solving right triangles, inverse trigonometric ratios.

Students will learn about, central and inscribed angles, chords, secants, tangent lines, and arcs, segment lengths in circles, angles formed by intersecting lines of a circle, formulas for circumference and area of a circle, area of a sector, the equation of a circle

Stage 1 -
Standards
G-SRT.C.6 Understand that by similarity,
side ratios in right triangles are
properties of the angles in the triangle,
leading to definitions of trigonometric
ratios for acute angles
G-SRT.C. 7 Explain and use the
relationship between the sine and cosine

G-SRT.C. 8 Use trigonometric ratios and the Pythagorean Theorem to solve right triangles in applied problems.

G-C.A. 2 Identify and describe relationships among inscribed angles, radii, and chords.

G-C.A. 3 Construct the incribed and circumscribed circles of a triangle, and prove properties of angles for a quadrilateral inscribed in a circle.

Teacher: Mrs. Jacque Boyle
Duration: March 2020
-

Corsica Stickney Curriculum Map

Corsica Stickney Curriculum Map

Explain to a partner how to find the measure of an angle formed by intersecting chords if the measures of the intercepted arcs are known.	MP. 4 Modeling MP. 3 Logic	Radius Theorem and its converse, students construct a tangent to a circle from a given point outside the circle using the Converse of the Tangent-Radius Theorem. Finally, students prove the Circumscribed Angle Theorem, which depends upon the Tangent-Radius Theorem and the Quadrilateral Sum Theorem. 15.2 This lesson provides an opportunity to address Mathematical Practice MP.4, which calls for students to "model with mathematics." Students create and use representations to extend their understanding of the Inscribed Angle Theorem to prove the Inscribed Quadrilateral Theorem. They recognize that the theorem is bi-conditional and implies that an inscribed parallelogram must be a rectangle and an inscribed rhombus must be a square. They use these ideas to find missing angle measures in quadrilaterals inscribed in circles and to inscribe a square in a circle. 15.5 This lesson provides an opportunity to address Mathematical Practice MP.3, which calls for students to "construct viable arguments." Students must recognize angle relationships that occur based on intersections of specific segment relationships in circles. They must justify their choices of theorems to use based on the segment relationships. Students then apply the theorem (or theorems) to find missing measures in circles.
Vocabulary		Differentiation

Corsica Stickney Curriculum Map

Inverse Tangent Trigonometric Ratio Sine Cosine Inverse trigonometric ratios Chord Central angle Inscribed angle arc minor arc major arc	semicircle adjacent arcs intercepted arcs tangent point of tangency secant secant segment external secant segment tangent segment		Students who need extra help receive help from teacher one on one for independent working time. If appropriate, they complete worksheets or tests in an alternate setting.
Stage 2 - Assessment Evidence			
Performance Tasks: Homework quizzes, worksheet, Tests.		Unit Pre-Assessment: Assign ready-made or customized practice tests to prepare students for high-stakes tests	
Stage 3 - Learning Plan			
- Learning Activities: procedures/topics - Reading and discussing lesson with class as lecture time. - Giving students examples to be completed in class. Most times using the Think, Pair, and Share to keep students active in their learning individually and together. - Students take notes and use notes to complete homework assignments. - Sometimes activities used to present things in multiple ways or for extra practice on struggling concepts.			
Lesson Descriptions			
LESSON 13.1 Tangent Ratio LESSON 13.2 Sine and Cosine Ratios LESSON 13.3 Special Right Triangles LESSON 13.4 Problem Solving with Trigonometry LESSON 15.1 Central Angles and Inscribed Angles LESSON 15.2 Angles in Inscribed Quadrilaterals LESSON 15.3 Tangents and Circumscribed Angles LESSON 15.4 Segment Relationships in Circles LESSON 15.5 Angle Relationships in Circles			

Subject: Geometry
Grade: $9^{\text {th }} / 10^{\text {th }}$
Unit 6 Properties of Circles
Module 16 Arc Length and Sector Area
Module 17 Equations of Circles and
Parabolas
Unit 7 Measurement and Modeling in
Two and Three Dimensions
Module 18 Volume Formulas
Module 19 Visualizing Solids

Summary of unit:

Students will learn about, central and inscribed angles, chords, secants, tangent lines, and arcs, segment lengths in circles, angles formed by intersecting lines of a circle, formulas for circumference and area of a circle, area of a sector, the equation of a circle

Students will learn about formulas for the volume of a prism, cylinder, pyramid, cone, and sphere, cross sections and solids of rotation, formulas for the surface area of a prism, cylinder, pyramid, cone, and sphere, scale factor, and calculating densities.

Stage 1 - Desired Results

Standards

G-GMD.A. 1 Give an informal argument for the formulas for the circumference of a circle, area of a circle, volume of a cylinder, pyramid, and cone.

G-C.A. 1 Prove that all circles are similar.
G.C.B.5a Define the radian measure of the angle as the constant of proportionality.

G-C.B.5b Derive ... the formula for the area of a sector.

G-GPE.A. 1 Derive the equation of a circle of given center and radius using the Pythagorean Theorem; complete the square to find the center and radius of a circle given by an equation.

G-GMD.A. 3 Know and apply volume and surface area formulas for cylinders, pyramids, cones, and spheres for composite figures to solve problems.

Essential Questions:

How can you justify and use the formulas for the circumference and area of a circle?

How do you find the length of an arc?

How do you find the area of a sector of a circle?
How can you write the equation of a circle if you know its radius and the coordinates of its center?

How do the formulas for the volume of a prism and cylinder relate to area formulas that you already know?

How do you find the volume of a pyramid?
How do you calculate the volumes of composite figures that include cones?

How can you use the formula for the volume of a sphere to calculate the volumes of composite figures?

What tools can you use to visualize solid figures accurately?

Corsica Stickney Curriculum Map

Corsica Stickney Curriculum Map

Explain to a partner how to apply the formulas for the volume of a pyramid. Explain to a partner how to apply the formulas for the volume of a cone. Explain to a partner how to apply the formula for the volume of a sphere. Explain to a partner how to identify the threedimensional objects generated by rotating two-dimensional shapes about a line. Explain to a partner how to find the surface area of prisms and cylinders.	MP. 2 Reasoning	Students are already familiar with Cavalieri's Principle but, in this module, a surprising application of this principle is used. The argument is based on showing that a hemisphere and a cylinder from which a cone has been removed have the same cross-sectional area at every level and therefore must have the same volume. A bit of algebra shows that the volume of a sphere is equal to _ $43 \pi r 3$ 19.2 This lesson provides an opportunity to address Mathematical Practice MP.2, which calls for students to "reason abstractly and quantitatively." In this lesson, students analyze threedimensional figures to determine how they "decompose" into twodimensional faces, each with its own area, and to find that the sum of the areas of the faces is equal to the surface area of the figure. Since the faces of the figures are polygons or circles, the combined areas generate the lateral area and surface area formulas students will use in this lesson.
Vocabulary		Differentiation
Arc Arc length Radian measure Sector Circle Right prism Right cylinder	net	Students who need extra help receive help from teacher one on one for independent working time. If appropriate, they complete worksheets or tests in an alternate setting.
Stage 2 - Assessment Evidence		
Performance Tasks: Homework quizzes, works	eet, Tests. Un As to 	ssment: made or customized practice tests dents for high-stakes tests
Stage 3 - Learning Plan		

Corsica Stickney Curriculum Map

- Learning Activities: procedures/topics
- Reading and discussing lesson with class as lecture time.
- Giving students examples to be completed in class. Most times using the Think, Pair, and Share to keep students active in their learning individually and together.
- Students take notes and use notes to complete homework assignments.
- Sometimes activities used to present things in multiple ways or for extra practice on struggling concepts.

Lesson Descriptions

LESSON 16.1 Justifying Circumference and Area of a Circle
LESSON 16.2 Arc Length and Radian Measure
LESSON 16.3 Sector Area
LESSON 17.1 Equation of a Circle
LESSON 18.1 Volume of Prisms and Cylinders
LESSON 18.2 Volume of Pyramids
LESSON 18.3 Volume of Cones
LESSON 18.4 Volume of Spheres
LESSON 19.1 Cross Sections and Solids of Rotation
LESSON 19.2 Surface Area of Prisms and Cylinders

Corsica Stickney Curriculum Map
Subject: Geometry
Grade: $9^{\text {th }} / 10^{\text {th }}$
Unit 7 Module 19 Visualizing Solids
Module 20 Modeling and Problem
Solving
Summary of unit:
Students will learn about formulas for the volume of a prism, cylinder, pyramid, cone, and sphere, cross sections and solids of rotation, formulas for the surface area of a prism, cylinder, pyramid, cone, and sphere, scale factor, and calculating densities.

Stage 1 - Desired Results

Standards	Essential Questions:
G-MG.A. 1 Use geometric shapes, their measures, and their properties to describe objects (e.g., modeling a tree trunk or a human torso as a cylinder).	How is the formula for the lateral area of a regular pyramid similar to the formula for the lateral area of a right cone?
G-MG.A. 2 Apply concepts of density based on area and volume in modeling situations	How can you use the formula for the surface area of a sphere to calculate the surface areas of composite figures?
G-GPE.B. 7 Use coordinates to compute perimeters of polygons and areas of triangles and rectangles, e.g., using the distance formula.	How does multiplying one or more of the dimensions of a figure affect its attributes?
G-GMD.A.3 Use volume formulas for cylinders, pyramids, cones, and spheres to solve problems	

Language objective	Mathematical practices	Integrate mathematical practices
Explain to a partner how to find the surface area of pyramids and cones.		
Explain to a partner how		
to find the surface area of		
a sphere.		
Explain to a partner the effect of a proportional dimension change on the area and perimeter of a geometric figure.		

Corsica Stickney Curriculum Map

Vocabulary		
Regular pyramid		Differentiation receive help from teacher one on one for independent working time. If appropriate, they complete worksheets or tests in an alternate setting.
Stage 2 - Assessment Evidence		

- Learning Activities: procedures/topics
- Reading and discussing lesson with class as lecture time.
- Giving students examples to be completed in class. Most times using the Think, Pair, and Share to keep students active in their learning individually and together.
- Students take notes and use notes to complete homework assignments.
- Sometimes activities used to present things in multiple ways or for extra practice on struggling concepts.

Lesson Descriptions

LESSON 19.3 Surface Area of Pyramids and Cones
LESSON 19.4 Surface Area of Spheres
LESSON 20.1 Scale Factor
LESSON 20.2 Modeling and Density

